• 久久精品一区二区,久久久一区二区三区,欧美日韩视频|欧美福利视频

    久久精品一区二区

    学术活动

    甬江数学讲坛538讲(明理数学大讲堂之数学讲座2025年第53讲)-Unfitted boundary algebraic equation: a finite difference analogue of boundary integral equation

    发布日期:2025-10-24 文章来源:数学与统计学院

    报告时间:2025年11月7日 下午14:00开始 报 告 人:夏卿(温州肯恩大学) 报告地点:9-218 报告题目:Unfitted boundary algebraic equation: a finite difference analogue of boundary integral equation 报告摘要: In this talk, we present a singularity-free unfitted boundary algebraic equation method, a finite-difference analogue of the classical boundary integral equation approach. We construct lattice Green’s functions for the Poisson, modified Helmholtz, and Helmholtz equations, and discuss efficient strategies for their computation. Building on discrete potential theory, we formulate discrete analogues of single- and double-layer potentials, enabling accurate treatment of complex geometries without conforming meshes. Various boundary closure techniques are examined for Dirichlet, Neumann, and mixed boundary conditions, with emphasis on robustness in challenging geometric configurations. To further enhance computational efficiency, we introduce acceleration strategies inspired by the difference potentials framework. Numerical experiments demonstrate the accuracy, stability, and scalability of the proposed method across a range of test problems. 报告人简介:夏卿,2019年博士毕业于犹他大学,先后于伦斯勒理工学院、瑞典皇家理工学院任博士后研究员、Dahlquist研究员。现任温州肯恩大学数学助理教授、国际前沿交叉研究院副研究员。研究内容集中于非贴体网格方法、离散势能理论及其在电磁学、流体、材料、生物模型中的应用。

    上一条:甬江数学讲坛537讲(明理数学大讲堂之数学讲座2025年第52讲)-《用普通的大学数学做出简单统一的凸优化分裂收缩算法》系列报告(三) 下一条:“材化讲坛”第96讲—— 水凝胶的纳米尺度结构调控:从高白度到类皮肤性能

    关闭

    久久精品一区二区